Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Am J Physiol Cell Physiol ; 326(1): C125-C142, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37955123

ABSTRACT

The ionotropic purinergic P2X7 receptor responds to extracellular ATP and can trigger proinflammatory immune signaling in macrophages. Caveolin-1 (Cav-1) is known to modulate functions of macrophages and innate immunity. However, it is unknown how Cav-1 modulates P2X7 receptor activity in macrophages. We herein examined P2X7 receptor activity and macrophage functions using bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cav-1 knockout (KO) mice. ATP (1 mM) application caused biphasic increase in cytosolic [Ca2+] and sustained decrease in cytosolic [K+]. A specific P2X7 receptor blocker, A-740003, inhibited the maintained cytosolic [Ca2+] increase and cytosolic [K+] decrease. Total internal reflection fluorescent imaging and proximity ligation assays revealed a novel molecular complex formation between P2X7 receptors and Cav-1 in WT BMDMs that were stimulated with lipopolysaccharides. This molecular coupling was increased by ATP application. Specifically, the ATP-induced Ca2+ influx and K+ efflux through P2X7 receptors were increased in Cav-1 KO BMDMs, even though the total and surface protein levels of P2X7 receptors in WT and Cav-1 KO BMDMs were unchanged. Cell-impermeable dye (TO-PRO3) uptake analysis revealed that macropore formation of P2X7 receptors was enhanced in Cav-1 KO BMDMs. Cav-1 KO BMDMs increased ATP-induced IL-1ß secretion, reactive oxygen species production, Gasdermin D (GSDMD) cleavage, and lactate dehydrogenase release indicating pyroptosis. A-740003 completely prevented ATP-induced pyroptosis. In combination, these datasets show that Cav-1 has a negative effect on P2X7 receptor activity in BMDMs and that Cav-1 in macrophages may contribute to finely tuned immune responses by preventing excessive IL-1ß secretion and pyroptosis.NEW & NOTEWORTHY In bone marrow-derived macrophages, Cav-1 suppresses the macropore formation of P2X7 receptors through their direct or indirect interactions, resulting in reduced membrane permeability of cations (Ca2+ and K+) and large cell-impermeable dye (TO-PRO3) induced by ATP. Cav-1 also inhibits ATP-induced IL-1ß secretion, ROS production, GSDMD cleavage, and pyroptosis. Cav-1 contributes to the maintenance of proper immune responses by finely tuning IL-1ß secretion and cell death in macrophages.


Subject(s)
Caveolin 1 , Receptors, Purinergic P2X7 , Animals , Mice , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Receptors, Purinergic P2X7/metabolism
2.
J Pharmacol Sci ; 153(3): 142-152, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770155

ABSTRACT

Osteoblasts synthesize and deposit essential components of the extracellular bone matrix and collagen scaffolds, leading to mineralized bone formation. Therefore, the proliferation of preosteoblasts (precursors of mature osteoblasts) helps in regulating skeletal homeostasis. This study demonstrated that the functional expression of KCa3.1, an intermediate-conductance Ca2+-activated K+ channel, is markedly upregulated in murine preosteoblastic MC3T3-E1 cells in the G0/G1 phase. The enhancement of KCa3.1 is involved in the establishment of more negative membrane potentials in MC3T3-E1 cells. This hyperpolarization can promote intracellular Ca2+ signaling because store-operated Ca2+ channels are activated. Treatment with TRAM-34, a specific KCa3.1 inhibitor, attenuated the cell cycle progression from the G0/G1 phase to the S/G2/M phases. In MC3T3-E1 cells, KCa3.1 significantly promoted the transition from the G1 phase to the S phase. KCa3.1 inhibition also caused G0 phase cell accumulation. Furthermore, TRAM-34 decreased the expression of alkaline phosphatase, bone sialoprotein, and osteocalcin, osteoblast differentiation markers in MC3T3-E1 cells, and inhibited the endochondral ossification of murine metatarsals. These results reveal novel ways by which KCa3.1 activity can strongly modulate osteoblast maturation during bone formation.

3.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457119

ABSTRACT

A number of distinct electrophysiological mechanisms that modulate the myogenic spontaneous pacemaker activity in the sinoatrial node (SAN) of the mammalian heart have been investigated extensively. There is agreement that several (3 or 4) different transmembrane ionic current changes (referred to as the voltage clock) are involved; and that the resulting net current interacts with direct and indirect effects of changes in intracellular Ca2+ (the calcium clock). However, significant uncertainties, and important knowledge gaps, remain concerning the functional roles in SAN spontaneous pacing of many of the individual ion channel- or exchanger-mediated transmembrane current changes. We report results from patch clamp studies and mathematical modeling of the hyperpolarization-activated current, If, in the generation/modulation of the diastolic depolarization, or pacemaker potential, produced by individual myocytes that were enzymatically isolated from the adult mouse sinoatrial node (SAN). Amphotericin-mediated patch microelectrode recordings at 35 °C were made under control conditions and in the presence of 5 or 10 nM isoproterenol (ISO). These sets of results were complemented and integrated with mathematical modeling of the current changes that take place in the range of membrane potentials (-70 to -50 mV), which corresponds to the 'pacemaker depolarization' in the adult mouse SAN. Our results reveal a very small, but functionally important, approximately steady-state or time-independent current generated by residual activation of If channels that are expressed in these pacemaker myocytes. Recordings of the pacemaker depolarization and action potential, combined with measurements of changes in If, and the well-known increases in the L-type Ca2+ current, ICaL, demonstrated that ICaL activation, is essential for myogenic pacing. Moreover, after being enhanced (approximately 3-fold) by 5 or 10 nM ISO, ICaL contributes significantly to the positive chronotropic effect. Our mathematical model has been developed in an attempt to better understand the underlying mechanisms for the pacemaker depolarization and action potential in adult mouse SAN myocytes. After being updated with our new experimental data describing If, our simulations reveal a novel functional component of If in adult mouse SAN. Computational work carried out with this model also confirms that in the presence of ISO the residual activation of If and opening of ICaL channels combine to generate a net current change during the slow diastolic depolarization phase that is essential for the observed accelerated pacemaking rate of these SAN myocytes.


Subject(s)
Myocytes, Cardiac , Sinoatrial Node , Action Potentials , Animals , Cations/pharmacology , Ion Channels/physiology , Isoproterenol/pharmacology , Mammals , Mice , Myocytes, Cardiac/physiology
5.
Proc Natl Acad Sci U S A ; 119(16): e2117435119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412911

ABSTRACT

Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation­transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.


Subject(s)
Calcium Channels, L-Type , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Calcium-Calmodulin-Dependent Protein Kinase Type 1 , Caveolae , Transcription, Genetic , Vascular Remodeling , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Caveolae/metabolism , Caveolin 1/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Excitation Contraction Coupling , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Neurons/metabolism , Phosphorylation
6.
Sci Rep ; 12(1): 7040, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35487957

ABSTRACT

In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.


Subject(s)
Atrial Fibrillation , Pulmonary Veins , Atrial Fibrillation/genetics , Computer Simulation , Humans , Muscle Cells , Mutation
7.
Curr Eye Res ; 47(3): 426-435, 2022 03.
Article in English | MEDLINE | ID: mdl-34674590

ABSTRACT

PURPOSE: Retinoblastoma is the most frequent intraocular cancer in children. It is also one of the most common causes for enucleation and carries a significant morbidity rate in affected individuals. Hence, studies on its pathophysiological and growth regulatory mechanisms are urgently needed to identify more effective novel therapeutics. METHODS: Using the Y79 retinoblastoma cell line, we investigated the electrophysiological and functional activities of the T-type voltage-gated calcium channel Cav3.1, that is constitutively expressed in these cells. We also analyzed the Akt and MAPK signaling pathways downstream of the epidermal growth factor receptor (EGFR) to understand the mechanism responsible for the inhibition of Cav3.1. RESULTS: We demonstrate that the EGFR inhibitor Afatinib significantly reduced cell viability and Cav3.1 mRNA expression and electrophysiological activity. At low concentrations (1 µM), Afatinib reduced the amplitude of Cav3.1 current density, whereas at a high concentration (10 µM), it completely abolished the voltage-gated calcium current. Our results show that inhibition of the MAPK pathway by a specific inhibitor VX-11e affected the Cav3.1 current in a dose-dependent manner. VX-11e (50 nM-1 µM) treatment reduced Cav3.1 current densities in Y79 cells, with complete abolishment of Cav3.1 current at higher concentrations (5 µM). We also demonstrate that the specific inhibition of the Akt kinase (using MK-2206) had no effect on the Cav3.1 currents. CONCLUSION: Our study provides a functional relationship between the MAPK pathway and EGFR signaling and indicates that the MAPK signaling pathway mediates the control of Cav3.1 by EGFR in retinoblastoma.


Subject(s)
Calcium Channels, T-Type , ErbB Receptors , MAP Kinase Signaling System , Retinal Neoplasms , Retinoblastoma , Afatinib , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Retinal Neoplasms/drug therapy , Retinoblastoma/drug therapy
8.
Front Physiol ; 12: 763584, 2021.
Article in English | MEDLINE | ID: mdl-34777021

ABSTRACT

Computational modeling has contributed significantly to present understanding of cardiac electrophysiology including cardiac conduction, excitation-contraction coupling, and the effects and side-effects of drugs. However, the accuracy of in silico analysis of electrochemical wave dynamics in cardiac tissue is limited by the homogenization procedure (spatial averaging) intrinsic to standard continuum models of conduction. Averaged models cannot resolve the intricate dynamics in the vicinity of individual cardiomyocytes simply because the myocytes are not present in these models. Here we demonstrate how recently developed mathematical models based on representing every myocyte can significantly increase the accuracy, and thus the utility of modeling electrophysiological function and dysfunction in collections of coupled cardiomyocytes. The present gold standard of numerical simulation for cardiac electrophysiology is based on the bidomain model. In the bidomain model, the extracellular (E) space, the cell membrane (M) and the intracellular (I) space are all assumed to be present everywhere in the tissue. Consequently, it is impossible to study biophysical processes taking place close to individual myocytes. The bidomain model represents the tissue by averaging over several hundred myocytes and this inherently limits the accuracy of the model. In our alternative approach both E, M, and I are represented in the model which is therefore referred to as the EMI model. The EMI model approach allows for detailed analysis of the biophysical processes going on in functionally important spaces very close to individual myocytes, although at the cost of significantly increased CPU-requirements.

9.
PLoS Comput Biol ; 17(8): e1009233, 2021 08.
Article in English | MEDLINE | ID: mdl-34383746

ABSTRACT

Mutations are known to cause perturbations in essential functional features of integral membrane proteins, including ion channels. Even restricted or point mutations can result in substantially changed properties of ion currents. The additive effect of these alterations for a specific ion channel can result in significantly changed properties of the action potential (AP). Both AP shortening and AP prolongation can result from known mutations, and the consequences can be life-threatening. Here, we present a computational method for identifying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoretical effects of existing drugs on individual ion currents, our aim is to compute optimal combinations that can 'repair' the mutant AP waveforms so that the baseline AP-properties are restored. More specifically, we compute optimal, combined, drug concentrations such that the waveforms of the transmembrane potential and the cytosolic calcium concentration of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type counterparts after the drug has been applied. In order to demonstrate the utility of this method, we address the question of computing an optimal drug for the short QT syndrome type 1 (SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect of various drugs on the mutated K+ channel. These published findings are the basis for our computational analysis which can identify optimal compounds in the sense that the AP of the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently developed insights regarding electrophysiological properties among myocytes from different species, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs with the SQT1 mutation. Since the 'composition' of ion channels that form the AP is different for the three types of myocytes under consideration, so is the composition of the optimal drug.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/genetics , ERG1 Potassium Channel/drug effects , ERG1 Potassium Channel/genetics , Heart Conduction System/abnormalities , Heart Defects, Congenital/drug therapy , Heart Defects, Congenital/genetics , Models, Cardiovascular , Myocytes, Cardiac/drug effects , Action Potentials/drug effects , Amino Acid Substitution , Animals , Anti-Arrhythmia Agents/administration & dosage , Arrhythmias, Cardiac/physiopathology , Computational Biology , Drug Combinations , Drug Design , Drug Therapy, Combination/methods , ERG1 Potassium Channel/physiology , Heart Conduction System/physiopathology , Heart Defects, Congenital/physiopathology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Mutation, Missense , Myocytes, Cardiac/physiology , Rabbits
10.
Front Physiol ; 12: 651162, 2021.
Article in English | MEDLINE | ID: mdl-34122128

ABSTRACT

Although plasma electrolyte levels are quickly and precisely regulated in the mammalian cardiovascular system, even small transient changes in K+, Na+, Ca2+, and/or Mg2+ can significantly alter physiological responses in the heart, blood vessels, and intrinsic (intracardiac) autonomic nervous system. We have used mathematical models of the human atrial action potential (AP) to explore the electrophysiological mechanisms that underlie changes in resting potential (Vr) and the AP following decreases in plasma K+, [K+]o, that were selected to mimic clinical hypokalemia. Such changes may be associated with arrhythmias and are commonly encountered in patients (i) in therapy for hypertension and heart failure; (ii) undergoing renal dialysis; (iii) with any disease with acid-base imbalance; or (iv) post-operatively. Our study emphasizes clinically-relevant hypokalemic conditions, corresponding to [K+]o reductions of approximately 1.5 mM from the normal value of 4 to 4.5 mM. We show how the resulting electrophysiological responses in human atrial myocytes progress within two distinct time frames: (i) Immediately after [K+]o is reduced, the K+-sensing mechanism of the background inward rectifier current (IK1) responds. Specifically, its highly non-linear current-voltage relationship changes significantly as judged by the voltage dependence of its region of outward current. This rapidly alters, and sometimes even depolarizes, Vr and can also markedly prolong the final repolarization phase of the AP, thus modulating excitability and refractoriness. (ii) A second much slower electrophysiological response (developing 5-10 minutes after [K+]o is reduced) results from alterations in the intracellular electrolyte balance. A progressive shift in intracellular [Na+]i causes a change in the outward electrogenic current generated by the Na+/K+ pump, thereby modifying Vr and AP repolarization and changing the human atrial electrophysiological substrate. In this study, these two effects were investigated quantitatively, using seven published models of the human atrial AP. This highlighted the important role of IK1 rectification when analyzing both the mechanisms by which [K+]o regulates Vr and how the AP waveform may contribute to "trigger" mechanisms within the proarrhythmic substrate. Our simulations complement and extend previous studies aimed at understanding key factors by which decreases in [K+]o can produce effects that are known to promote atrial arrhythmias in human hearts.

11.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946248

ABSTRACT

Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and 'pacemaker depolarizations' in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.


Subject(s)
Delayed Rectifier Potassium Channels/metabolism , Myocytes, Cardiac/physiology , Potassium/metabolism , Action Potentials , Animals , Cations, Monovalent/metabolism , Cells, Cultured , Heart/physiology , Ion Transport , Mice , Models, Cardiovascular , Pacemaker, Artificial , Rabbits , Sodium-Calcium Exchanger/metabolism
12.
J Mol Cell Cardiol ; 158: 26-37, 2021 09.
Article in English | MEDLINE | ID: mdl-34004185

ABSTRACT

It is imperative to develop better approaches to predict how antiarrhythmic drugs with multiple interactions and targets may alter the overall electrical and/or mechanical function of the heart. Safety Pharmacology studies have provided new insights into the multi-target effects of many different classes of drugs and have been aided by the addition of robust new in vitro and in silico technology. The primary focus of Safety Pharmacology studies has been to determine the risk profile of drugs and drug candidates by assessing their effects on repolarization of the cardiac action potential. However, for decades experimental and clinical studies have described substantial and potentially detrimental effects of Na+ channel blockers in addition to their well-known conduction slowing effects. One such side effect, associated with administration of some Na+ channel blocking drugs is negative inotropy. This reduces the pumping function of the heart, thereby resulting in hypotension. Flecainide is a well-known example of a Na+ channel blocking drug, that exhibits strong rate-dependent block of INa and may cause negative cardiac inotropy. While the phenomenon of Na+ channel suppression and resulting negative inotropy is well described, the mechanism(s) underlying this effect are not. Here, we set out to use a modeling and simulation approach to reveal plausible mechanisms that could explain the negative inotropic effect of flecainide. We utilized the Grandi-Bers model [1] of the cardiac ventricular myocyte because of its robust descriptions of ion homeostasis in order to characterize and resolve the relative effects of QRS widening, flecainide off-target effects and changes in intracellular Ca2+ and Na+ homeostasis. The results of our investigations and predictions reconcile multiple data sets and illustrate how multiple mechanisms may play a contributing role in the flecainide induced negative cardiac inotropic effect.


Subject(s)
Anti-Arrhythmia Agents/adverse effects , Computer Simulation , Flecainide/adverse effects , Myocardial Contraction/drug effects , Voltage-Gated Sodium Channel Blockers/adverse effects , Action Potentials/drug effects , Anti-Arrhythmia Agents/metabolism , Calcium Channels/metabolism , Flecainide/metabolism , Heart Rate/drug effects , Heart Ventricles/cytology , Heart Ventricles/drug effects , Homeostasis/drug effects , Humans , Models, Cardiovascular , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Signal Transduction/drug effects , Sodium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism
13.
Biochem Biophys Res Commun ; 537: 29-35, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33383561

ABSTRACT

Articular chondrocytes are exposed to dynamic osmotic environments during normal joint loading, and thus, require effective volume regulatory mechanisms. A regulatory volume decrease (RVD) is one of the mechanisms for protecting chondrocytes from swelling and damage. Swelling-activated Cl- currents (ICl,swell) are responsible for the RVD, but the molecular identity in chondrocytes is largely unknown. In this study, we reveal that in human OUMS-27 chondrocytes, ICl,swell can be elicited by hypoosmotic stimulation (180 mOsm) and be inhibited by classical Cl- channel blockers, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and be attenuated by siRNA knockdown of ClC-3. Our molecular analyses revealed that ClC-3A is expressed as a major splice variant in both human articular chondrocytes and OUMS-27 cells. The onset and early phase of RVD following hypoosmotic stress in OUMS-27 cells were affected by DIDS and ClC-3 knockdown. Hypoosmotic stimulation caused Ca2+ influx and subsequent release of prostaglandin E2 (PGE2) in OUMS-27 cells, and both of these responses were reduced by DIDS and ClC-3 knockdown. These results strongly suggest that ClC-3 is responsible for ICl,swell and RVD under the hypoosmotic environments. It is likely that ClC-3 is associated with the pathogenesis of cartilage degenerative diseases including osteoarthritis via PGE2 release.


Subject(s)
Chloride Channels/metabolism , Chondrocytes/metabolism , Dinoprostone/pharmacology , Cartilage, Articular/cytology , Cell Line , Cell Size/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Gene Knockdown Techniques , Humans , Solutions
14.
Sci Rep ; 10(1): 10537, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601303

ABSTRACT

Using animal cells and tissues as precise measuring devices for developing new drugs presents a long-standing challenge for the pharmaceutical industry. Despite the very significant resources that continue to be dedicated to animal testing of new compounds, only qualitative results can be obtained. This often results in both false positives and false negatives. Here, we show how the effect of drugs applied to animal ventricular myocytes can be translated, quantitatively, to estimate a number of different effects of the same drug on human cardiomyocytes. We illustrate and validate our methodology by translating, from animal to human, the effect of dofetilide applied to dog cardiomyocytes, the effect of E-4031 applied to zebrafish cardiomyocytes, and, finally, the effect of sotalol applied to rabbit cardiomyocytes. In all cases, the accuracy of our quantitative estimates are demonstrated. Our computations reveal that, in principle, electrophysiological data from testing using animal ventricular myocytes, can give precise, quantitative estimates of the effect of new compounds on human cardiomyocytes.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Heart Ventricles/drug effects , Myocytes, Cardiac/drug effects , Phenethylamines/pharmacology , Sotalol/pharmacology , Sulfonamides/pharmacology , Action Potentials/drug effects , Animals , Dogs , Heart Ventricles/cytology , Humans , Models, Cardiovascular , Myocytes, Cardiac/cytology , Rabbits , Translational Research, Biomedical
15.
Cells ; 9(7)2020 06 29.
Article in English | MEDLINE | ID: mdl-32610485

ABSTRACT

An improved understanding of fundamental physiological principles and progressive pathophysiological processes in human articular joints (e.g., shoulders, knees, elbows) requires detailed investigations of two principal cell types: synovial fibroblasts and chondrocytes. Our studies, done in the past 8-10 years, have used electrophysiological, Ca2+ imaging, single molecule monitoring, immunocytochemical, and molecular methods to investigate regulation of the resting membrane potential (ER) and intracellular Ca2+ levels in human chondrocytes maintained in 2-D culture. Insights from these published papers are as follows: (1) Chondrocyte preparations express a number of different ion channels that can regulate their ER. (2) Understanding the basis for ER requires knowledge of a) the presence or absence of ligand (ATP/histamine) stimulation and b) the extraordinary ionic composition and ionic strength of synovial fluid. (3) In our chondrocyte preparations, at least two types of Ca2+-activated K+ channels are expressed and can significantly hyperpolarize ER. (4) Accounting for changes in ER can provide insights into the functional roles of the ligand-dependent Ca2+ influx through store-operated Ca2+ channels. Some of the findings are illustrated in this review. Our summary diagram suggests that, in chondrocytes, the K+ and Ca2+ channels are linked in a positive feedback loop that can augment Ca2+ influx and therefore regulate lubricant and cytokine secretion and gene transcription.


Subject(s)
Calcium/metabolism , Potassium/metabolism , Animals , Chondrocytes/metabolism , Chondrocytes/physiology , Humans , Membrane Potentials/physiology , Synovial Fluid/metabolism , Synovial Fluid/physiology
16.
Br J Pharmacol ; 177(19): 4497-4515, 2020 10.
Article in English | MEDLINE | ID: mdl-32667679

ABSTRACT

BACKGROUND AND PURPOSE: Pharmacotherapy of atrial fibrillation (AF), the most common cardiac arrhythmia, remains unsatisfactory due to low efficacy and safety concerns. New therapeutic strategies target atrial-predominant ion-channels and involve multichannel block (poly)therapy. As AF is characterized by rapid and irregular atrial activations, compounds displaying potent antiarrhythmic effects at fast and minimal effects at slow rates are desirable. We present a novel systems pharmacology framework to quantitatively evaluate synergistic anti-AF effects of combined block of multiple atrial-predominant K+ currents (ultra-rapid delayed rectifier K+ current, IKur , small conductance Ca2+ -activated K+ current, IKCa , K2P 3.1 2-pore-domain K+ current, IK2P ) in AF. EXPERIMENTAL APPROACH: We constructed experimentally calibrated populations of virtual atrial myocyte models in normal sinus rhythm and AF-remodelled conditions using two distinct, well-established atrial models. Sensitivity analyses on our atrial populations was used to investigate the rate dependence of action potential duration (APD) changes due to blocking IKur , IK2P or IKCa and interactions caused by blocking of these currents in modulating APD. Block was simulated in both single myocytes and one-dimensional tissue strands to confirm insights from the sensitivity analyses and examine anti-arrhythmic effects of multi-atrial-predominant K+ current block in single cells and coupled tissue. KEY RESULTS: In both virtual atrial myocytes and tissues, multiple atrial-predominant K+ -current block promoted favourable positive rate-dependent APD prolongation and displayed positive rate-dependent synergy, that is, increasing synergistic antiarrhythmic effects at fast pacing versus slow rates. CONCLUSION AND IMPLICATIONS: Simultaneous block of multiple atrial-predominant K+ currents may be a valuable antiarrhythmic pharmacotherapeutic strategy for AF.


Subject(s)
Atrial Fibrillation , Action Potentials , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Computer Simulation , Heart Atria , Humans , Myocytes, Cardiac
17.
Bioelectricity ; 2(3): 258-268, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-34471850

ABSTRACT

Background: Although the chondrocyte is a nonexcitable cell, there is strong interest in gaining detailed knowledge of its ion pumps, channels, exchangers, and transporters. In combination, these transport mechanisms set the resting potential, regulate cell volume, and strongly modulate responses of the chondrocyte to endocrine agents and physicochemical alterations in the surrounding extracellular microenvironment. Materials and Methods: Mathematical modeling was used to assess the functional roles of energy-requiring active transport, the Na+/K+ pump, in chondrocytes. Results: Our findings illustrate plausible physiological roles for the Na+/K+ pump in regulating the resting membrane potential and suggest ways in which specific molecular components of pump can respond to the unique electrochemical environment of the chondrocyte. Conclusion: This analysis provides a basis for linking chondrocyte electrophysiology to metabolism and yields insights into novel ways of manipulating or regulating responsiveness to external stimuli both under baseline conditions and in chronic diseases such as osteoarthritis.

18.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L366-L375, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31800260

ABSTRACT

In visceral smooth muscle cells (SMCs), the large-conductance Ca2+-activated K+ (BK) channel is one of the key elements underlying a negative feedback mechanism that is essential for the regulation of intracellular Ca2+ concentration. Although leucine-rich repeat-containing (LRRC) proteins have been identified as novel auxiliary γ-subunits of the BK channel (BKγ) in several cell types, its physiological roles in SMCs are unclear. The BKγ expression patterns in selected SM tissues were examined using real-time PCR analyses and Western blotting. The functional contribution of BKγ1 to BK channel activity was examined by whole cell patch-clamp in SMCs and heterologous expression systems. BKγ1 expression in mouse bronchial SMCs (mBSMCs) was higher than in other several SMC types. Coimmunoprecipitation and total internal reflection fluorescence imaging analyses revealed molecular interaction between BKα and BKγ1 in mBSMCs. Under voltage-clamp, steady-state activation of BK channel currents at pCa 8.0 in mBSMCs occurred in a voltage range comparable to that of reconstituted BKα/BKγ1 complex. However, this range was much more negative than in mouse aortic SMCs (mASMCs) or in HEK293 cells expressing BKα alone and ß-subunit (BKß1). Mallotoxin, a selective activator of BK channel that lacks BKγ1, dose-dependently activated BK currents in mASMCs but not in mBSMCs. The abundant expression of BKγ1 in mBSMCs extensively facilitates BK channel activity to keep the resting membrane potential at negative values and prevents contraction under physiological conditions.


Subject(s)
Bronchi/cytology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Myocytes, Smooth Muscle/metabolism , Neoplasm Proteins/metabolism , Protein Subunits/metabolism , Acetophenones/pharmacology , Animals , Benzopyrans/pharmacology , Calcium/metabolism , Humans , Ion Channel Gating/drug effects , Male , Membrane Potentials/drug effects , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Rats, Wistar
19.
Am J Physiol Heart Circ Physiol ; 316(3): H527-H542, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30576220

ABSTRACT

Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.


Subject(s)
Action Potentials , Heart Atria/metabolism , Models, Cardiovascular , Potassium Channels, Voltage-Gated/metabolism , Atrial Function , Humans , Kinetics
20.
Front Physiol ; 9: 974, 2018.
Article in English | MEDLINE | ID: mdl-30233381

ABSTRACT

Human transplant programs provide significant opportunities for detailed in vitro assessments of physiological properties of selected tissues and cell types. We present a semi-quantitative study of the fundamental electrophysiological/biophysical characteristics of human chondrocytes, focused on K+ transport mechanisms, and their ability to regulate to the resting membrane potential, Em. Patch clamp studies on these enzymatically isolated human chondrocytes reveal consistent expression of at least three functionally distinct K+ currents, as well as transient receptor potential (TRP) currents. The small size of these cells and their exceptionally low current densities present significant technical challenges for electrophysiological recordings. These limitations have been addressed by parallel development of a mathematical model of these K+ and TRP channel ion transfer mechanisms in an attempt to reveal their contributions to Em. In combination, these experimental results and simulations yield new insights into: (i) the ionic basis for Em and its expected range of values; (ii) modulation of Em by the unique articular joint extracellular milieu; (iii) some aspects of TRP channel mediated depolarization-secretion coupling; (iv) some of the essential biophysical principles that regulate K+ channel function in "chondrons." The chondron denotes the chondrocyte and its immediate extracellular compartment. The presence of discrete localized surface charges and associated zeta potentials at the chondrocyte surface are regulated by cell metabolism and can modulate interactions of chondrocytes with the extracellular matrix. Semi-quantitative analysis of these factors in chondrocyte/chondron function may yield insights into progressive osteoarthritis.

SELECTION OF CITATIONS
SEARCH DETAIL
...